Questions on Work \& Energy - Mark Scheme

1. Any suitable example of something strained (eg: stretched elastic band)
2. (a) (i) (one of the) force \times perpendicular distance between the forces

B1
(ii) torque $=1200 \times 0.4$

$$
=480 \mathrm{Nm}
$$

[allow one mark for $1200 \times 0.2=240(\mathrm{~N} \mathrm{~m})$]
(b) (i) work $=$ force \times distance (moved)

$$
=2 \times 1200 \times 2 \times \pi \times 0.2 \quad \text { B1 }
$$

$$
=3016(\mathrm{~J})
$$

(ii) power = work done / time

$$
\begin{aligned}
& =3000 /(1 / 40) \\
& =1.2 \times 10^{5}(\mathrm{~W})
\end{aligned}
$$

3. (a) One reading from the graph e.g. 1.0 N causes 7 mm

Hence $5.0(\mathrm{~N})$ causes $35 \pm 0.5(\mathrm{~mm})$
(allow one mark for 35 ± 1 (mm)
(b) (i) Force on each spring is $2.5(\mathrm{~N})$
extension $=17.5(\mathrm{~mm})$ allow $18(\mathrm{~mm})$ or reading from graph [allow ecf from (a)]
(ii) strain energy $=$ area under graph $/ 1 / 2 \mathrm{~F} \times \mathrm{e}$

$$
\begin{aligned}
& =2 \times 0.5 \times 2.5 \times 17.5 \times 10^{-3} \\
& =0.044(\mathrm{~J})
\end{aligned}
$$

A1
[allow ecf from (b)(i)]
(c) $\mathrm{E}=$ stress / strain

$$
\begin{array}{rlr}
\text { Stress }=\text { force } / \text { area and strain }=\text { extension } / \text { length } & \text { C1 } \\
\begin{array}{rlrl}
\text { extension } & & (\mathrm{F} \times \mathrm{L}) /(\mathrm{A} \times \mathrm{E}) & \\
& =(5 \times 0.4) /\left(2 \times 10^{-7} \times 2 \times 10^{11}\right) & \\
& =5 .(0) \times 10^{-5}(\mathrm{~m}) & \mathrm{A} 1
\end{array}
\end{array}
$$

(d) strain energy is larger in the spring B1
extension is (very much larger) (for the same force) for the spring B1
4. (a) (i) speed $=d / t$

$$
\begin{align*}
& =24 / 55 \tag{C1}\\
& =0.436\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { allow } 0.44 \\
& \quad \text { do not allow one sf }
\end{align*}
$$

(ii) kinetic energy $=1 / 2 \mathrm{~m} \mathrm{v}^{2} \quad \mathrm{C} 1$

$$
\begin{aligned}
& =0.5 \times 20 \times(0.436)^{2} \\
& =1.9(\mathrm{~J}) \text { note ecf from (a)(i) }
\end{aligned}
$$

(iii) potential energy $=\mathrm{mgh}$
penalise the use of $g=10$
(b) (i) power $=$ energy / time or work done / time

$$
=(15 \times 784) / 55
$$

note ecf from (a)(iii)

$$
=214(\mathrm{~W})
$$

(ii) needs to supply children with kinetic energy B1
air resistance B1
friction in the bearings of the rollers / belt B1
total mass of children gives an average mass of greater than $20 \mathrm{~kg} \quad$ B1 Max B2
[10]
5. Energy cannot be created or destroyed; it can only
be transferred/transformed into other forms
or
The (total) energy of a system remains constant
or
$($ total $)$ initial energy $=($ total $)$ final energy (AW)
Allow: 'Energy cannot be created / destroyed / lost'
6. (i) Density $=$ mass / volume

Area \times length $=$ mass $/$ density

$$
\begin{aligned}
\text { Area } & =\left(2.0 \times 10^{-3}\right) /(7800 \times 0.5) \text { or } 2.56 \times 10^{-7} / 0.5 & & \text { B1 } \\
& =5.1(3) \times 10^{-7} \mathrm{~m}^{2} & & \text { A0 }
\end{aligned}
$$

(ii) $\mathrm{E}=(\mathrm{F} \times \mathrm{l}) /(\mathrm{A} \times \mathrm{e}) /$ stress $=\mathrm{F} / \mathrm{A}\left(1.6 \times 10^{8}\right.$ and strain
$=\mathrm{e} / 1\left(8 \times 10^{-4}\right)$
$\mathrm{F}=(\mathrm{E} \times \mathrm{A} \times \mathrm{e}) / 1$
$=\left(2 \times 10^{11} \times 5.1 \times 10^{-7} \times 4.0 \times 10^{-4}\right) / 0.5$
$=82(\mathrm{~N})(81.6)$
(iii) Diameter for D is half G hence area is $1 / 4$ of G

Extension is $4 \times$ greater
Tension required is the same $=82(\mathrm{~N})$
(iv) The extension is proportional to the force / Hooke's B1 law (OWTE)
7. (i) $1 \quad$ Elastic as returns to original length (when load is removed) B1

2 Hooke's law is obeyed as force is proportional to the extension B1
Example of values given in support from table B1
(ii) Measure (original) length with a (metre) rule / tape B1

Suitable method for measuring the extension e.g.
levelling micrometer and comparison wire or fixed scale plus vernier or travelling microscope and marker / pointer B1
(iii) $\mathrm{E}=$ stress $/$ strain C 1

$$
=(25 \times 1.72) /\left(1.8 \times 10^{-7} \times 1.20 \times 10^{-3}\right) \quad \mathrm{C} 1
$$

$$
=1.99 \times 10^{11}(\mathrm{~Pa})
$$

8. (i) $E_{\mathrm{p}}=m g h$ and $E_{\mathrm{k}}=\frac{1}{2} m v^{2}$ (Allow Δh for $\left.h\right)$

Not: $E_{k}=m g h$
(ii) $m g h=\frac{1}{2} m v^{2}$

B1
$v^{2}=2 g h$ or $v=\sqrt{2 g h}$
9. (i) $m=\rho V$

Allow any subject for the density equation
$m=1.0 \times 10^{3} \times\left(1.2 \times 10^{-2} \times 2.0 \times 10^{7}\right)$
mass of water $=2.4 \times 10^{8}(\mathrm{~kg})$
(ii) loss in potential energy $=2.4 \times 10^{8} \times 9.81 \times 2.5 \times 10^{3}$

Allow 1 mark for ' $5.89 \times 10^{12}(\mathrm{~J})$
C1
30% of GPE $=0.3 \times 5.89 \times 10^{12}\left(=1.77 \times 10^{12}\right)$
Allow 2 marks for ' $1.77 \times 10^{12}(\mathrm{~J})$ '
power $=\frac{1.77 \times 10^{12}}{900}$
power $=1.9(63) \times 10^{9}(\mathrm{~W})(\approx 2 \mathrm{GW})$
Note: $\frac{5.89 \times 10^{12}}{900}(=6.5 \mathrm{GW})$ scores 2 marks
(iii) Any correct suitable suggestion; eg: the energy supply is not constant/ cannot capture all the rain water / large area (for collection)

Note: Do not allow reference to 'inefficiency' / 'cost'
10. (a) The graph shows length and not extension of the spring / spring has original length (of 2.0 cm) (AW)

Allow: 'length cannot be zero'
(b) Straight line (graph) / linear graph / force \propto extension / constant
gradient (graph)

$$
\text { Not 'force } \propto \text { length' }
$$

(c) force constant $=\frac{2.0}{0.04}$

Note: The mark is for any correct substitution
force constant $=50\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$
Allow: 1 mark for $0.5\left(\mathrm{~N} \mathrm{~m}^{-1}\right)-10^{n}$ error
Allow 1 mark for $5 / 12 \times 10^{-2}=41.7$ or $4 / 10 \times 10^{-2}=40$ or

$$
\begin{aligned}
& 3 / 8 \times 10^{-2}=37.5 \text { or } 2 / 6 \times 10^{-2}=33.3 \text { or } \\
& 1 / 4 \times 10^{-2}=25
\end{aligned}
$$

(d) work done $=\frac{1}{2} F x$ or $\frac{1}{2} k x^{2}$ or 'area under graph'
work done $=\frac{1}{2} \times 3.0 \times 0.06$ or $\frac{1}{2} \times 50 \times 0.06^{2}$
Possible ecf
work done $=0.09(\mathrm{~J})$
Note: 1 sf answer is allowed
(e) Find the gradient / slope (of the tangent / graph)

Maximum speed at $1.0 \mathrm{~s} / 3.0 \mathrm{~s} / 5.0 \mathrm{~s} /$ steepest 'part' of graph $/$ displacement $=0$

Allow: 2 marks for 'steepest / maximum gradient'

$$
\begin{aligned}
& \text { 11. (i) Tension }=\text { Weight } / \mathrm{mg} \\
& =1.5 \times 10^{3} \times 9.8 \quad \text { using } g=10-1 \\
& =14700(\mathrm{~N})
\end{aligned}
$$

12. (a) Young modulus $=$ stress $/$ strain
(As long as elastic limit is not exceeded)
(b) Strain has no units because it is the ratio of two lengths. B1
